OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **MARSH POND**, **CHICHESTER**, the program coordinators have made the following observations and recommendations:

Welcome to the New Hampshire Volunteer Lake Assessment Program! As your group continues to participate in VLAP over the years, the database created for your lake/pond will help your monitoring group track water quality trends and will ultimately enable your group and DES to identify potential sources of pollutants from the watershed that may affect lake/pond quality.

As a rule of thumb, *please* try to sample at least once per month during the summer months (**June**, **July**, and **August**). In addition, it may be necessary to conduct rain event sampling at multiple locations along a stream using the bracketing technique to pinpoint sources of pollution. Furthermore, baseline studies could involve bi-weekly or monthly sampling for an extended period of time. DES will let you know if this type of sampling is appropriate.

We understand that future sampling will depend upon volunteer availability, and your group's water monitoring goals and funding availability. We would like to point out that water quality trend analysis is not feasible with only a few data points. It will take many years to develop a statistically sound set of water quality baseline data. Specifically, after 10 consecutive years of participation in the program, we will be able to analyze the in-lake data with a simple statistical test to determine if there has been a significant change in the annual mean chlorophyll-a concentration, Secchi-disk transparency reading, and phosphorus concentration. Therefore, frequent and consistent sampling will ensure useful data for future analyses.

Please contact the VLAP Coordinator early this spring to schedule the annual DES lake visit. It would best to schedule the DES visit for early June to refresh your sampling skills!

We would like to encourage your monitoring group to formally participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring the lakes and ponds for the presence of exotic This program only involves a small amount of time aquatic plants. during the summer months. Volunteers survey their waterbody once a month from **June** through **September**. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watchers Kit, volunteers look for any species that are of suspicion. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers will send a specimen to DES for identification. If the plant specimen is an exotic, a biologist will visit the site to determine the extent of the problem and to formulate a plan of action to control the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants.

If you would like to help protect your lake or pond from exotic plants, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers web page at www.des.state.nh.us/wmb/exoticspecies/survey.htm.

FIGURE INTERPRETATION

➤ **Figure 1 and Table 1:** The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake/pond has been monitored through the program.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration *increased greatly* from **June** to **July**, and then **decreased** from **July** to **August**. The chlorophyll-a concentration in **June** was **slightly less than** state mean. In **July**, the chlorophyll-a concentration was **much greater than** state mean, and in **August** was **slightly greater than** the state mean. The elevated chlorophyll

concentration on the **July** sampling event indicates than an **algal bloom** had occurred.

The historical data (the bottom graph) show that the 2004 chlorophyll-a mean is **greater than** the state mean.

After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

While algae are naturally present in all lakes/ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes/ponds, phosphorus is the nutrient that algae depend upon for growth. Algal concentrations may increase with an increase in nonpoint sources of phosphorus loading from the watershed, or inlake sources of phosphorus loading (such as phosphorus releases from the sediments). Therefore, it is extremely important for volunteer monitors to continually educate residents about how activities within the watershed can affect phosphorus loading and lake/pond quality.

➤ **Figure 2 and Table 3:** The graphs in Figure 2 (Appendix A) show historical and current year data for lake/pond transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the lake/pond has been monitored through the program.

Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters.

The current year data (the top graph) show that the in-lake transparency **decreased slightly** from **June** to **July**, and then **increased slightly** from **July** to **August**. The Secchi disk was **visible on the bottom** of the pond in **June** and **August**. (Please note that the maximum depth of the pond is approximately **1.8 meters**. It is also important to note that the **July** sampling event was conducted during a rain event which may have made it difficult to view the Secchi disk.)

As the chlorophyll concentration **increased** from June to July, the transparency **decreased**, and as the chlorophyll **decreased** from July

to August, the transparency *increased*. We typically expect this *inverse* relationship in lakes. As the amount of algal cells in the water *increases* the depth to which one can see into the water column typically *decreases*, and vice-versa.

As previously discussed, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.

Typically, high intensity rainfall causes erosion of sediments into lakes/ponds and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake/pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake/pond. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request.

Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake/pond has joined the program.

Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *increased greatly* from **June** to **August**. (Please note that the pond was not sampled for phosphorus in July). The phosphorus concentration in **June** was *slightly greater than* the state median and in **August** was *much greater than* the state median.

The historical data show that the 2004 mean epilimnetic phosphorus concentration is *greater than* the state median.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 (Appendix B) lists the current and historical phytoplankton species observed in the lake/pond. Specifically, this table lists the three most dominant phytoplankton species observed in the sample and their relative abundance in the sample. In addition, this table has been enhanced this year to include the overall phytoplankton cell abundance rating of the sample. The overall phytoplankton cell abundance in a sample is calculated using a formula based on the relationship that DES biologists have observed over the years regarding phytoplankton concentrations, algal concentrations, and biological productivity in New Hampshire's lakes and ponds. mathematical equation is used to classify the overall abundance of phytoplankton cells in a sample into the following categories: sparse, scattered, moderate, common, abundant, and very abundant. Generally, the more phytoplankton cells there are in a sample, the higher the chlorophyll concentration and the higher the biological productivity of the lake.

The dominant phytoplankton species observed in the **June** sample were **Eutonia** (diatom), **Dinobryon** (golden-brown), and **Tabellaria** (diatom).

The overall abundance of rating phytoplankton cells in the sample was calculated to be **common**.

Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds.

> Table 4: pH

Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The mean pH value

for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the surface waters in the state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot in the epilimnion was **6.64**, which means that the water is *slightly acidic*.

Due to the presence of granite bedrock in the state and acid deposition (from snowmelt, rainfall, and atmospheric particulates) in New Hampshire, there is not much that can be done to effectively increase lake/pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 (Appendix B) presents the current year and historical epilimnetic ANC for each year the lake/pond has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The mean ANC value for New Hampshire's lakes and ponds is **6.6 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) was **7.4 mg/L** this season, which is **slightly greater than** the state mean. In addition, this indicates that the lake/pond is **moderately vulnerable** to acidic inputs (such as acid precipitation).

> Table 6: Conductivity

Table 6 (Appendix B) presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current (which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column). The mean conductivity value for New Hampshire's lakes and ponds is **59.4 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual conductivity in the epilimnion at the deep spot this season was **199.17 uMhos/cm**, which is **much greater than** the state mean.

In addition, the conductivity in the **South Inlet** was **very high** on the **June** and **August** sampling events (**416 and 915 uMhos/cm**, respectively). Typically, sources of increased conductivity are due to human activity. These activities include septic systems, agricultural runoff, and road runoff (which contains road salt during the spring snow melt). New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the lake/pond. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride).

Chloride sampling was conducted on June and August sampling events. For information regarding chloride results, please refer to the discussion of Table 14.

In addition, please read this year's Special Topic Article, "Conductivity is on the rise in New Hampshire's Lakes and Ponds: What is causing the increase and what can be done?" which is found in Appendix D of this report. This article may help your association understand what types of activities can lead to elevated conductivity and chloride levels and what residents can do to minimize this type of pollution.

> Table 8: Total Phosphorus

Table 8 (Appendix B) presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration was **elevated** in the **Inlet** on the **June and August** sampling events. However, the turbidity of these samples was not elevated. This station has had a history of **fluctuating** total phosphorus concentrations. We recommend that your monitoring group conduct a stream survey and storm event sampling along this inlet so that we can determine what may be causing the elevated phosphorus level.

For a detailed explanation on how to conduct rain event sampling, please refer to the 2002 VLAP Annual Report "Special Topic Article" or contact the VLAP Coordinator.

> Table 9 and Table 10: Dissolved Oxygen and Temperature Data

Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2004 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was **high** at all depths sampled at the deep spot of the lake/pond. Typically, shallow lakes and ponds that are not deep enough to stratify into more than one or two thermal layers will have relatively high amounts of oxygen at all depths. This is due to continual lake mixing and diffusion of oxygen into the bottom waters induced by wind and wave action.

> Table 11: Turbidity

Table 11 (Appendix B) lists the current year and historical data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The turbidity in the **Inlet**, **Outlet**, and the **South Inlet** samples was **elevated** on the **July** sampling event (**20.8**, **13.4**, **and 33.5 NTUs**, respectively); however, the phosphorus was not elevated. On the July field data sheet, the volunteers indicated that the sampling was conducted during a rain event and it had rained during the previous two three days. Typically, high intensity rainfall causes erosion of sediments into lakes/ponds and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake/pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake/pond. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request.

We also recommend that your monitoring group conduct a stream survey and storm event sampling along the **Inlet** and **South Inlet**. This additional sampling may allow us to determine what is causing the **elevated** levels of turbidity.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report "Special Topic Article" or contact the VLAP Coordinator.

> Table 13: Chloride

The chloride ion (Cl·) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that *elevated* chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted acute and chronic chloride criteria of 860 and 230 mg/L respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The **epilimnion**, **Inlet**, and **South Inlet** were sampled for chloride on the **June and August** sampling events. The chloride results in the **epilimnion** and **Inlet** samples were **54 mg/L or less**, which is **less than** the state acute and chronic chloride criteria.

The chloride results in the **South Inlet** were *elevated* on the **June** and **August** sampling events. It is important to point out that the **August** concentration of **232 mg/L** was *slightly greater than* the chronic chloride criteria.

We recommend that your monitoring group continue to conduct chloride sampling in the epilimnion at the deep spot and in the inlets, particularly in the spring soon after snow-melt and after rain events during the summer. This will establish a baseline of data which will assist your monitoring group and DES in determining lake quality trends in the future. In addition, we recommend that your group conduct a stream survey and field conductivity investigation along the South Inlet. It is likely that stormwater runoff from Route 4 is influencing the chloride, conductivity, and turbidity levels in the South Inlet.

Please read this year's Special Topic Article, "Conductivity is on the rise in New Hampshire's Lakes and Ponds: What is causing the increase and what can be done?" which is found in Appendix D of this report. This article may help your association understand what types of activities can lead to elevated conductivity and chloride levels and what residents can do to minimize this type of pollution.

Table 14: Current Year Biological and Chemical Raw Data

This table is a new addition to the Annual Report. This table lists the most current sampling season results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw" (meaning unprocessed) data. The results are sorted by station, depth zone (epilimnion, metalimnion, and hypolimnion) and parameter.

> Table 15: Station Table

This table is a new addition to the Annual Report. As of the Spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past (and are most familiar with), an EMD station name also exists for each VLAP sampling location. For each station sampled at your lake or pond, Table 15 identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your lake/pond, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors fail to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

This was the first season that your monitoring group participated in VLAP. Therefore, the VLAP Coordinator trained your group on the **June** sampling event. Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the proper field sampling procedures. Keep up the good work!

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if the volunteer monitors followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future reoccurrences of improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis.

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, NHDES Fact Sheet ARD-32, (603) 271-2975 or www.des.state.nh.us/factsheets/ard/ard-32.htm.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES Booklet WD-03-42, (603) 271-2975.

Best Management Practices for Well Drilling Operations, NHDES Fact Sheet WD-WSEB-21-4, (603) 271-2975 or www.des.nh.gov/factsheets/ws/ws-21-4.htm.

Canada Geese Facts and Management Options, NHDES Fact Sheet BB-53, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-53.htm.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet WMB-10, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-10.htm.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, NHDES Fact Sheet WD-SP-1, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-1.htm.

Freshwater Jellyfish In New Hampshire, NHDES Fact Sheet WD-BB-5, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-51/htm.

Impacts of Development Upon Stormwater Runoff, NHDES Fact Sheet WD-WQE-7, (603) 271-2975 or www.des.state.nh.us/factsheets/wqe/wqe-7.htm.

IPM: An Alternative to Pesticides, NHDES Fact Sheet WD-SP-3, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-3.htm.

Iron Bacteria in Surface Water, NHDES Fact Sheet WD-BB-18, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-18.htm.

Lake Foam, NHDES Fact Sheet WD-BB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-5.htm.

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, NHDES Fact Sheet WD-BB-9, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-9.htm.

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, NHDES Fact Sheet WD-SP-2, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-2.htm.

Road Salt and Water Quality, NHDES Fact Sheet WD-WMB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-4.htm.

Sand Dumping - Beach Construction, NHDES Fact Sheet WD-BB-15, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-15.htm.

Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, NHDES Fact Sheet SP-4, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-4.htm.

Soil Erosion and Sediment Control on Construction Sites, NHDES Fact Sheet WQE-6, (603) 271-2975 or www.des.state.nh.us/factsheets/wqe/wqe-6.htm.

Swimmers Itch, NHDES Fact Sheet WD-BB-2, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-2.htm.

Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org.

Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, NHDES Fact Sheet WD-BB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-4.htm.